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Abstract. This report deals with the numerical evaluation of a class of func- 
tions of a complex variable that can be represented as Stieltjes transforms of non- 
negative real functions. The considered class of functions contains, among others, 
the confluent hypergeometric functions of Whittaker and the Bessel functions. 
The method makes it possible, in principle, to compute the values of the function 
with an arbitrarily small error, using one and the same algorithm in whole complex 
plane cut along the negative real axis. Detailed numerical data are given for the 
application of the algorithm to the modified Bessel function Ko(z). 

1. Introduction. The present paper deals with the numerical evaluation of func- 
tions of a complex variable z that can be represented in the form 

(1) f(z) I f t 

where the function 4' is real, bounded, and nondecreasing with infinitely many 
points of increase, and where z varies in the domain G = {z I z $ 0, I arg z I < 7r} 

(i.e., in the complex plane cut along the negative real axis). Our method makes it 
possible, in principle, to calculate f(z) with an arbitrarily small error, using one and 
the same algorithm for all z G G. The algorithm automatically furnishes realistic 
a posteriori error estimates. Difficulties due to slow convergence and/or numerical 
instability must be expected if z is close to the boundary of G, i.e., if z is almost 
zero or real and negative. 

It is not necessary for the application of the algorithm that the function sP be 
easily accessible. It may even be identical with the fraction which is to be com- 
puted. We require only that the integrals 

sow 
(2) (-i)W =f t d4'd4(t), n = 0 1, 2, ... 

all exist and be known with great precision (in practice this means that the coeffi- 
cients cn can be expressed in analytic form). It is also required that I Cn I does not 
grow too rapidly with n; a growth such that 

co 

(3) E I 
n 1-1/2n = =0 

n-0 

is admissible. (Condition (3) is satisfied when (-l)'cn = (n!)a if a ? 2.) 
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2. An Example. A nontrivial example of a function to which our algorithm 
applies is given by the function defined for arbitrary real values of the parameters 
a and 13 and for Re z > 0 by 

(4) e1a,,(Z) = f e- 2F1 (4 + a, 2 + 13; 1;-S) ds. 

(Here 2F1 denotes the hypergeometric function of Gauss.) Alternate representa- 
tions of this function, valid for | arg z I < 7r, are 

(5) 4)a,6(Z) = zF(4+ 1 G) f e'tt1/2 + t )a-1/2 dt (13 > -4) 

and a similar expression with a and 1 interchanged. 
The function 4a is connected with Whittaker's confluent hypergeometric 

function Wk.,, through the relations 
(6) Wk, (z) = k()(a+P)/2-1 z/2 

z Z k+1 -/ 

Like Whittaker's function, it is thus elementarily related to a number of other 
special functions of mathematical physics. For instance, as seen from (5), 4'1/2,, 

essentially reduces to the incomplete r-function (and thus, if 13 = 0, to the error 
integral). Furthermore, the modified Bessel function of the second kind can be 
expressed in terms of bass by means of the relation 

(7) K,(z) = (27rz)1/2e_-'b ,,(2z). 

As is well known, the function K, occupies a central position in the theory of Bessel 
functions, since all other Bessel functions can be expressed through it. For instance, 
if I arg z.l < ir/2, and if we put c, = e /2, then 

J,,(z) =- -[U,, K,,(iz) -, K(-iz)], 
(8) 

Y,,(z) = -- [cs K,(iz) + A, KY(-iz)]. 

In particular, if z = x > 0, then 

2 2 
J,(x) = JIm co,.K,(ix), Y,(x) =--Rec, K,(ix). 

iT iT 

Thus by evaluating K,(z) for the single complex number ix, we obtain at the same 
time the Bessel function of the first and of the second kind. 

By (4), < is merely the Laplace transform of 2F1(I + a, 4 + 1; 1;-s). By 
using known series expansions, it is easily shown that 

2F1(l + a + ;1;-s) = e(1+ )P(1+ ) e "'te+'Pa,-,(t) dt. 

Substituting this expansion in (4) and interchanging the order of integrations, 
we obtain the crucial representation 

1 Ief e ta+ 4-a,-q(t) 
(9) 4'a,#(z) = z a++ t cit 

r(41 + 2)( 3 
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valid for a > -, > - 2. The representation (5) shows that &at(t) is posi- 
tive for t > 0 if at least one of the parameters a and fi is less than 1. Trivially, this 
is also true for 

(-a,-1/2(t) 
s 

et ds = . 

Thus, the representation (9) is of the form (1), provided that a -2 ,f >.>-2 

and that at least one of the parameters is contained in the interval (-i, 2]. It 
follows from (4) that the coefficients In are given by 

(10) n= (1 )n(2 + a)n(2 + )n 

By Stirling's formula, these coefficients are easily seen to satisfy (3). 

3. The Algorithm. The basic idea of the algorithm has been given in [4]. By 
expanding (z + t)-1 in powers of z-1 and integrating term by term, it follows 
that the function f defined by (1) possesses the asymptotic expansion 

00 

(11) f(Z) Ed Cn 

valid if I z oo such that I Im z I is bounded away from zero. Alternatively, 
using the remainder term of the geometric series we have for n = 0, 1,2,** 

(12) f(Z)=?+-2+*+-+ C n(Z) z z2 Zn n+ 

where 

- =( ) zf (-t)nd4(t) 
cn o Z + t 

The coefficient 0,,(z) is called the nth converging factor of the asymptotic expan- 
sion (11). 

Our technique for evaluating f(z) consists in expanding an(Z) in a continued 
fraction of the Stieltjes type and using the formula (12). Under the conditions 
stipulated in Section 1, the continued fraction converges for all z C G. The choice 
of n is, in principle, arbitrary; however, since the evaluation of 4(z) consumes 
more time than the summation of the terms CkZ , it is recommended to choose 
n such that j cnZ-n-' I is as small as possible, since then the permissible relative 
error in an(Z) is as large as possible. 

The continued fraction representation of the converging factors an(Z) can be 
obtained, simultaneously for all values of n, from the quotient-difference (QD)- 
scheme [8] associated with the series (11). This scheme is defined by the relations 

( 13) e (n) = 0 qi~n) = 
" 

n = 0, 1,n2, * *n*, 
cn 

and 
(n) __ (n+1) (n) (n+1) 

ek =[qk -qk + ek-1 n = 0, 21 2, * 

qk+1 n) qkk = 1, 2, 
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It can be shown that under the conditions stated in Section 1, no zero divisors can 
occur, and the scheme is thus well defined. If the coefficients q and e are arranged 
in alternating columns, as shown in Table I, then each of the relations (14) con- 
nects 4 adjacent entries in an obvious fashion. 

In terms of these coefficients, we have 

(15a) ?I,(Z) zj _I qiZffI _ _ I __ I , n Of 1, 2, 

which may be written in the equivalent form 

(15b) dn (z) = + a2I + a3I + a4Iffj + 

where v = z'12, Re v > 0, and 
.(n) (n) (in) (n) 

a2k -qk , a2k+l =-ek 

The fraction (15b) is evaluated numerically as the limit of its approximants 

(16) Wk = Pk/lk 

as k -a o, where Pk and Ok are defined by the recurrence relations 

( 17 ) Po = 0P Pi = , pk = ak Pk-2 + Pk-1, 

TO = l a2 = Sk = ak (n k-2 + ?Tk-l kX =2y3, 

4. An Estimate for the Truncation Error. Even if truncated, the continued 
fraction (15a) or the equivalent fraction (15b) conveys accurate information about 
the location of the complex number an(Z). The following theorem is proved in [5]: 

THEOREM. Let wUL = X, wo 0, Wl, W2, ... , denote the approximants of the 
continued fraction (15b), and let em (m = O 1, 2, * *) denote the circular arc origi- 
nating at wm1- X passing through wm+l, and terminating at wi . Then, for each m = 
1, 2, ... , the value of (15b) is contained in the compact point set R.m bounded by ym 

and by that portion of ym-, which lies between w1-, and wi . 
It is also known that the sets ?Em are convex, that the two circular arcs bounding 

them always intersect at an angle I arg z 1, that Qm.+ C Um (m = 1, 2, - - *), and 
that the diameter of E. tends to zero for m -> co. For z real and positive, the arcs 

TABLE I 

0 

o lo 
0 ei(q) 

o () e1(0) 

0 ei(l) e2 (0) 

q](2)/ q?() q(0) 

0 el (2) e2 (1) 
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FIG. la 

Ym and the sets ?.m degenerate into straight line segments. It is well known in this 
case that An,(z) is contained in the interval spanned by any two consecutive ap- 
proximants. 

In Figs. la and lb we show the arcs ym and the sets Um for the case z- -i/2 
of the continued fraction representation for the converging factor 4o(z) of the series 

( 18) E (-1 ) [(-2 )n] 
n~O2n !Zn+l 

asymptotic to 
2 

fAz) = eZ ,7 Ko(z). 

5. Construction of the QD-Scheme. In a few cases of interest it is possible 
to give explicit formulas for the elements of the QD-scheme associated with the 

series ( 11 ). For example, for the function (1/2,0 related to the incomplete r-function 

we have 

c= (-l)n(l + O)n 

hence 

(19a) q(l(n) =-( + n + 2 

and thus, as is easily verified, 

ek (n)=- -k 
(n) ek = k(,+n 
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(n 0, 1, 2, * *; k = 1, 2, ***). The resulting continued fractions for an. (z) are 
essentially known (at least for n= 0, see [6], p. 148 or [7], p. 103) and have been 
used for numerical purposes with good results [1]. 

In many other cases of interest, no such explicit formulas are known, and it be- 
comes necessary to construct the QD-scheme numerically. This numerical con- 
struction is not without hazards in view of the well-known numerical instability 
of the QD-algorithm. The reason for the instability can easily be seen from the 
above example: For k fixed, qk(n) grows linearly with n. The first formula (14) thus 
requires forming the difference of two nearly equal large numbers, with obviously 
ensuing loss of accuracy. It thus becomes necessary to look for other, more stable, 
methods for generating the scheme. We shall discuss several possible approaches, 
only one of which proved to be practically successful. 

5.1. Rational Arithmetic. If the coefficients cn are rational, all entries of the 
QD-scheme are rational, and it is theoretically possible to construct the scheme in 
rational arithmetic by treating every number as an ordered pair of integers (see 
[3]). This technique was found impractical, even in a simple case such as (17), 
because the number of digits in both numerator and denominator increases very 
rapidly with increasing k, although every fraction was reduced to lowest terms by 
means of the Euclidian algorithm. Using a maximum word length of 50 decimal 
digits on the IBM 1620 it was possible to compute the QD-scheme for Ko(z) only 
up to k = 4. In another experiment, the QD-scheme associated with the function 
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J(z) = log r(z) -(z -) log z + z log 2r (where the c1n are related to the 
Bernoulli numbers), the calculations could only be carried out up to k = 3. To the 
extent to which they were computed, the number thus obtained could be used as 
a standard against which values obtained by other methods could be compared. 

5.2. Progressive Form of Algorithm. In some applications of the QD 
theory (for instance, when the algorithm is used for the factorization of poly- 
nomials, see [8]), the algorithm can be stabilized if the scheme is generated row by 
row instead qf column by column. The necessary first two rows can be obtained 
from the series A dnz = z 2 [ cnz-n-ly-l, whose coefficients dn can be found 
from the cn via simple recurrence relations. In order to find out whether a similarly 
stabilizing effect takes place also in the present context, we applied this method to 
the series E (-l)n n! z`n1, where the entries of the scheme (for n ? 0) are given 
by (19b) if fi = 2. However, this method turned out to be just about as unstable 
as the method of generating the scheme column by column. What seems to happen 
here is that the ratios dn+1/dn behave asymptotically exactly like the ratios Cn+l/Cn . 
It would be interesting to have theoretical confirmation of this experimental ob- 
servation. 

5.3. Incremental Form of Algorithm. The basic idea here is as follows: 
If, for given values cn X the first quotients q, 

) differ only slightly from (19a), the 
resulting entries in the scheme will differ only little from (19b). A little more gen- 
erally, we assume that 

(20) q1(n) An + B +, I(n) 

where A and B are constants and where the -yi'n are "small". Writing 

qk~n A(n + k - 1) + B + k~ 

(21 ) ek = kA + Ek, 

we find that the "corrections" Yk(n) and Ek(n) satisfy the recurrence relations O(n) = 0, 
(n) (n+l) (n) + | (n+l) 

Ck ( - Yk -Yk + to k-1 

(22) (n) (n7l) (n+l) (n) (n + k)A + B + 7Yk 
7k+l =ck + (Ek kA + Ek(n) 

(n= 0,1, 2, * ; k = 1, 2, * *),which are somewhat more complicated than (14) 
but which no longer involve differences of large quantities. 

In our standard example f(z) = eZ V(2/7rz)Ko(z), where 

[(I1)n]2 
Cn= (-1)n 2n 2Xnn 

we find that 

(23) ql 8(n + 1) - 8(n + 1)' 
8(n+1)~~(n 

and (20) thus holds with A =-2 B = 0, -y = -1/8(n + 1). More generally, 
if the cn are the coefficients of the asymptotic series for bai(Z)X 

Cn )n 2 2( 2+ 
- Cn = (-1) n!\~~Jn+1 
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then 
(n) =_(a'+ + n +A)( + n + ) 

1 a!+:a (a-1)(2 -a) 

= -An- X XAn + 1) 

which again is of the form (20). Quite generally it can be shown that if 

as n - a, then all 7k(n) and k(n) possess asymptotic expansions as n -* c, with 
the leading terms 

(24) k( 
(n) 

Ci/n, Ek(n) -kC1/n 2 

Our initial assumption about the smallness of the corrections is thus justified. 
Although much more stable than the original form of the algorithm, the above 

"incremental" version is not yet perfectly stable due to the fact that the fraction 
in the second formula (22) is comparable to n/k for large values of n. If u denotes 

1624 

8(Z) n 0 
n= 6 

10Min 

o-5 

10, 

1058 

c-7 

10 - I I 

10101'l\ 

0.1 1 10z 

FIG. 2 
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the basic unit of the machine number representing the mantissa of a floating 
number, a crude analysis using the formulas (24) shows that the error in Yk 

may be as large as 

22k41n+k l\ 
n2~~k1)u.C1 

However, due to statistical effects the actual error can be expected to be much 
smaller. 

We have used the above method to compute the QD-scheme associated with 
Ko(z) [whose first q-column is given by (23)] for n = 0, k = 20; for n = 1, 2 **, 
40, k = 10 - [n/2]. The corrections (nk() and Ek(n) were computed from (22) and 
the entries of the scheme subsequently from (21). The computations were per- 
formed in both double and triple precision. All 24 decimal digits of the triple pre- 
cision values agreed with the values computed in rational arithmetic wherever the 
latter were available (i.e., up to k = 4). The double precision values agreed with 
the triple precision values up to k 10 (n = 0,1, *1 , 19). Double precision 

- 2 

10-3_ SJ (x) 

A\___8y(X) 

10 - 

-3 10 - 

10 - 

10 

-lo 

10 

0.1 1 10 X 

FIG. 3 
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values computed directly from (14) agreed with the triple precision values only 
up to k = 7 (n = O, 1, .., 25). 

Table II presents the coefficients qk , ek of the continued fractions tAo(z), #6(Z), 

#1o(Z) associated with Ko(z). 

6. Numerical Results for Ko(z). Having discussed the construction of the 
QD-scheme pertaining to the function Ko(z), we shall now present some data con- 
cerning the evaluation of the function itself. As indicated above, the method of 
evaluation consists in using the representation 

Ko (z) = e-Z rz{O + z + 6nl a(Z)} 

O'V 2~~~z z2 z Zn z+~1jn 

where 

Ck = (-1)2k ] [(=)k (2 i)k 1 3 * (2k - 1 )2 

2k k! 23k k! 
and where an(Z) is the continued fraction (15a) calculated via the QD-scheme 
from the power series E1 cnz-n- as described in Section 5.3. 

lC-2 
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10 
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FIG. 4 
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In order to test the algorithm in a realistic manner, the triple precision values of 
qk(n) and ek, were truncated to single precision. The remaining operations, how- 
ever, were carried out in double precision, mainly to avoid rounding error in form- 
ing the partial sums of the asymptotic expansion. 

Fig. 2 shows the accuracy of the evaluation of Ko(z) for z. > 0. The absolute value 
of the difference between the values of e'Ko(z), computed for z = 0.1(0.1)2(1)10 
and the values given in the tables [2] are plotted in a logarithmic scale. The con- 
verging factors do, ahe, 1t0O (with kens = 20, 16, 14, respectively) were used. For 
small values of z (z < 2, say), it is evidently best to transform the whole asymptotic 
into a continued fraction, i.e., to work with n = 0. 

Purely imaginary values of z and values with argument r/4 were also tried. 
These values can be checked by means of the relations 

1o(-ix) = [Jo(x) + iYo(x)], 

Ko(ret(T14)) = ker (r) + ikei(r) 

(see [9], p. 78 and p. 81). 
For clarity, only the results for n = 0 are presented in Figs. 3 and 4. Although 

theoretically the convergence of the continued fraction is worse than for real z, the 
results are virtually the same in all three cases: For I z I _ 1, the continued frac- 
tion permits an evaluation of Ko(z) with an error of at most 10-9. 
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